Sums, Projections, and Sections of Lattice Sets, and the Discrete Covariogram
نویسندگان
چکیده
Basic properties of finite subsets of the integer lattice Z are investigated from the point of view of geometric tomography. Results obtained concern the Minkowski addition of convex lattice sets and polyominoes, discrete X-rays and the discrete and continuous covariogram, the determination of symmetric convex lattice sets from the cardinality of their projections on hyperplanes, and a discrete version of Meyer’s inequality on sections of convex bodies by coordinate hyperplanes.
منابع مشابه
Spatial statistics for lattice points on the sphere I: Individual results
We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares. We examine several statistics of these point sets, such as the electrostatic potential, Ripley's function, the variance of the number of points in random spherical caps, and the covering radius. Some of the results are conditional on t...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملDISCRETE TOMOGRAPHY AND FUZZY INTEGER PROGRAMMING
We study the problem of reconstructing binary images from four projections data in a fuzzy environment. Given the uncertainly projections,w e want to find a binary image that respects as best as possible these projections. We provide an iterative algorithm based on fuzzy integer programming and linear membership functions.
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملLattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 34 شماره
صفحات -
تاریخ انتشار 2005